38 research outputs found

    Modeling and Control of Uncertain Nonlinear Systems

    Get PDF
    A survey of the methodologies associated with the modeling and control of uncertain nonlinear systems has been given due importance in this paper. The basic criteria that highlights the work is relied on the various patterns of techniques incorporated for the solutions of fuzzy equations that corresponds to fuzzy controllability subject. The solutions which are generated by these equations are considered to be the controllers. Currently, numerical techniques have come out as superior techniques in order to solve these types of problems. The implementation of neural networks technique is contributed in the complex way of dealing the appropriate coefficients and solutions of the fuzzy systems

    Deep Learning for Pipeline Damage Detection: an Overview of the Concepts and a Survey of the State-of-the-Art

    Get PDF
    Pipelines have been extensively implemented to transfer oil as well as gas products at wide distances as they are safe, and suitable. However, numerous sorts of damages may happen to the pipeline, for instance erosion, cracks, and dent. Hence, if these faults are not properly refit will result in the pipeline demolitions having leak or segregation which leads to tremendously environment risks. Deep learning methods aid operators to recognize the earliest phases of threats to the pipeline, supplying them time and information in order to handle the problem efficiently. This paper illustrates fundamental implications of deep learning comprising convolutional neural networks. Furthermore the usages of deep learning approaches for hampering pipeline detriment through the earliest diagnosis of threats are introduced

    Parallel Distributed Compensation for Voltage Controlled Active Magnetic Bearing System using Integral Fuzzy Model

    Get PDF
    Parallel Distributed Compensation (PDC) for current-controlled Active Magnetic Bearing System (AMBS) has been quite effective in recent years. However, this method does not take into account the dynamics associated with the electromagnet. This limits the method to smaller scale applications where the electromagnet dynamics can be neglected. Voltage-controlled AMBS is used to overcome this limitation but this comes with serious challenges such as complex mathematical modelling and higher order system control. In this work, a PDC with integral part is proposed for position and input tracking control of voltage-controlled AMBS. PDC method is based on nonlinear Takagi-Sugeno (T-S) fuzzy model. It is shown that the proposed method outperforms the conventional fuzzy PDC. It stabilizes the bearing shaft at any chosen operating point and tracks any chosen smooth trajectory within the air gap with a high external disturbance rejection capability

    Blockage Detection in Pipeline Based on the Extended Kalman Filter Observer

    Get PDF
    Currently numerous approaches with various applicability have been generated in order to detect damage in pipe networks. Pipeline faults such as leaks and partial or complete blockages usually create serious problems for engineers. The model-based leak, as well as block detection methods for the pipeline systems gets more and more attention. Among these model-based methods, the state observer and state feedback based methods are usually used. While the observability, as well as controllability, are taken to be the prerequisites for utilizing these techniques. In this work, a new technique based on the extended Kalman filter observer is proposed in order to detect and locate the blockage in the pipeline. Furthermore, the analysis of observability and controllability in the pipe networks is investigated. Important theorems are given for testing the observability as well as controllability of the pipeline system

    Space-independent community structure detection in United States air transportation

    Get PDF
    This article presents an evolution-based model for the US airport network. The topological properties and the volume of people travelling are both studied in detail, revealing high heterogeneity in space and time. A recently developed community structure detection method, accounting for the spatial nature of these networks, reveals a better picture of the communities within. © 2012 IFAC

    Solution of Dual Fuzzy Equations Using a New Iterative Method

    Get PDF
    In this paper, a new hybrid scheme based on learning algorithm of fuzzy neural network (FNN) is offered in order to extract the approximate solution of fully fuzzy dual polynomials (FFDPs). Our FNN in this paper is a five-layer feed-back FNN with the identity activation function. The input-output relation of each unit is defined by the extension principle of Zadeh. The output from this neural network, which is also a fuzzy number, is numerically compared with the target output. The comparison of the feed-back FNN method with the feed-forward FNN method shows that the less error is observed in the feed-back FNN method. An example based on applications are given to illustrate the concepts, which are discussed in this paper

    Pipeline Leak Detection and Location based on Fuzzy Controller

    Get PDF

    Using a simple expert system to assist a powered wheelchair user

    Get PDF
    A simple expert system is described that helps wheelchair users to drive their wheelchairs. The expert system takes data in from sensors and a joystick, identifies obstacles and then recommends a safe route. Wheelchair users were timed while driving around a variety of routes and using a joystick controlling their wheelchair via the simple expert system. Ultrasonic sensors are used to detect the obstacles. The simple expert system performed better than other recently published systems. In more difficult situations, wheelchair drivers did better when there was help from a sensor system. Wheelchair users completed routes with the sensors and expert system and results are compared with the same users driving without any assistance. The new systems show a significant improvement

    Making decisions about saving energy in compressed air systems using Ambient Intelligence and Artificial Intelligence

    Get PDF
    Compressed air systems are often the most expensive and inefficient industrial systems. For every 10 units of energy, less than 1 unit turns into useful compressed air. Air compressors tend to be kept fully on even if they are not (all) needed. The research proposed in this short paper will combinereal time ambient sensing with Artificial Intelligence andKnowledge Management to automatically improve efficiency in energy intensive manufacturing. The research will minimise energy use for air compressors based on real-time manufacturing conditions (and anticipated future requirements). Ambient datawill provide detailed information on performance. Artificial Intelligence will make sense of that data and automatically act. Knowledge Management will facilitate the processing of information to advise human operators on actions to reduce energy use and maintain productivity. The aim is to create new intelligent techniques to save energy in compressed air systems
    corecore